Robust Background Segmentation Using Background Models for Surveillance Application
نویسندگان
چکیده
Gaussian Mixture Models (GMM) is a very typical method for background subtraction because it possesses a strong resistibility to repetitive background motion. However when it comes to complex environment, some unexpected situations occur, e.g., when illumination changes, gradually or quickly, segmentation is generated with a poor result. Moreover, this method is not capable of distinguishing shadows of moving objects. In this paper features of intensity and texture information are utilized to eliminate the shadow of moving objects. Integrated with modified Gaussian mixture models by redefining the update criterion, proposed algorithm is adapted to the flexible illumination environment. To validate that the proposed algorithm is robust to apply on surveillance system, we provide a metric with set of variables for evaluation, a comparison had been made between proposal and original GMM, results show the accuracy improvement of models using our updated algorithm. Averagely at least of 34.8% decrease of false alarm rate proves the quality of segmentation has been significantly enhanced and proposal is more competent and stable for outdoor surveillance applications.
منابع مشابه
Denoising of Surveillance Video Using Adaptive Gaussian Mixture Model Based Segmentation Towards Effective Video Parameters Measurement
In recent times, capturization of video became more feasible with the advanced technologies in camera. Those videos get easily contaminated by noise due to the characteristics of image sensors. Surveillance sequences not only have static scenes but also dynamic scenes. Many efforts have been taken to reduce video noise. Averaging the frame as an image had limited denoising effect and resulted i...
متن کاملRobust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملBackground Division, A Suitable Technique for Moving Object Detection
Nowadays, background model does not have any robust solution and constitutes one of the main problems in surveillance systems. Researchers are working in several approaches in order to get better background pixel models. This is a previous step to apply the background subtraction technique and results are not as good as expected. We concentrate our efforts on the second step for segmentation of...
متن کاملSegmentation and Tracking Framework for Video Object by Using Threshold Decision and Diffusion
Video object segmentation and tracking are two essential building blocks of smart surveillance systems. However, there are several issues that need to be resolved. Threshold decision is a difficult problem for video object segmentation with a multibackground model.Addition to , some conditions make robust video object tracking difficult. These conditions include nonrigid object motion, target a...
متن کاملRobust and Accurate Segmentation of Moving Objects in Real-time Video
Robust and accurate segmentation of moving object in real-time video is very important for object silhouette extraction in vision-based human computer interaction and video surveillance systems. However, the inherent problem of moving object segmentation based on background subtraction is to distinguish the changes from background disturbing effects such as noise and illumination changes. There...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009